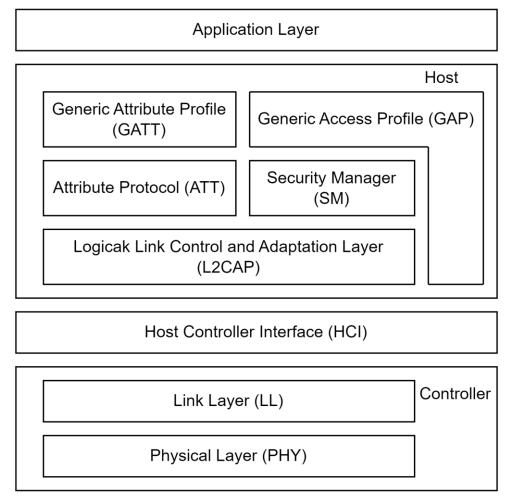

Bluetooth Low Energy (BLE) Security & Threat Modeling

by Silvia Schmidt & Christopher Skallak

BLE Basics

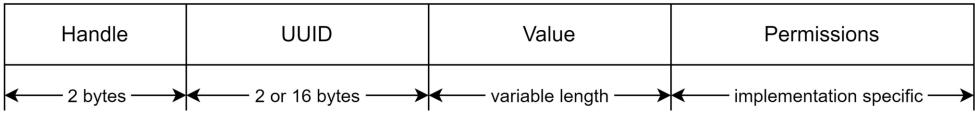
One Specification two Communication Protocols


- Bluetooth Classic (BR/EDR)
 - Since Version 1 (1999)
 - Up to 2.1 Mb/s
 - 2,4 GHz ISM Band
 - 79 Channels
 - Use Cases:
 - Data Transfers
 - Audio Streaming
 - e.g., car hands-free phone system
 - PC Peripherals

c.f. [Spec v5.3, p. 188 fig 1.1]

- Bluetooth Low Energy (BLE)
 - Since Version 4.0 (2010)
 - Up to 2 Mb/s
 - 2,4 GHz ISM Band
 - 40 Channels:
 - 3 Advertising
 - 37 General Purpose
 - Use Cases:
 - Sensor Networks
 - Smart Home
 - Wearables
 - PC Peripherals

BLE Stack

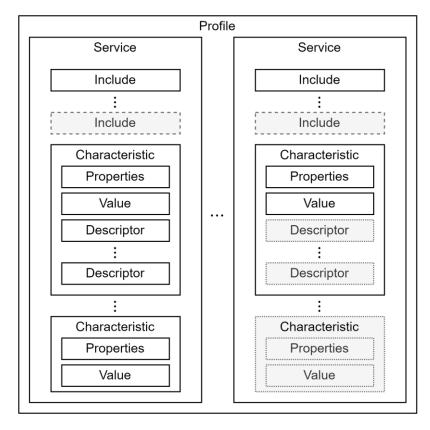

c.f. [Spec v5.3, p. 1245, fig. 2.1]

Device Roles & Communication Types

- Connectionless Communication (Broadcast):
 - Broadcaster
 - Observer
 - e.g. Sensor networks, Apple iTag
- Connection-oriented Communication:
 - Central (Client)
 - Peripheral (Server)
 - e.g. Smart Home, End-user Devices

BLE Stack: Attribute Protocol (ATT)

- Attribute Protocol (ATT):
 - Specifies a Datatype:
 - Handle
 - 16-bit Identifier unique inside of device
 - UUID
 - 128-bit unique Identifier
 - Defines Type
 - Attribute Value
 - Attribute Permissions



BLE Stack: Generic Attribute Protocol

Generic Attribute Protocol (GATT):

Defines Structure with Attributes:

- Profile
- Includes
- Service
- Characteristic
 - Data Storage
- Descriptors
- Security Features on a per Characteristic Basis
 - · Common Chars e.g., Device Name
 - Protected Chars e.g., HID

c.f. [Spec v5.3, p. 1280, fig. 2.8]

 Handles	Service > Characteristics	 Properties	Data	
0001 -> 0007	Generic Access (1800)			
0003	Device Name (2a00)	READ	PocketPi	
0005	Appearance (2a01)	READ	Unknown	
0007	2aa6	READ	01	
 0008 -> 0011	 Generic Attribute (1801)	 		
000a	Service Changed (2a05)	INDICATE		
000d	2b29	READ, WRITE	00	
000f	2b2a	READ	9cþÚ0eS8dº9cÂ1fÒ9cqæÅØ	
0011	2b3a	READ	01	
 0012 -> 0014	 Device Information (180a)	 		
0014	PnP ID (2a50)	READ	Vendor ID: 0x1d6b (USB Implementer's Forum assigned Vendor ID value)	
			Product ID: 0x0246	
		 	Product Version: 0x0542	
 0015 -> 001b	 e95dd91d251d470aa062fa1922dfa9a0	 		
0017	e95d93ee251d470aa062fa1922dfa9a1	READ, WRITE	ÿÿÿ1f	
0019	e95d93ee251d470aa062fa1922dfa9a2	READ, WRITE	ÿÿÿ1f	
001b	e95d93ee251d470aa062fa1922dfa9a3	READ, WRITE	insufficient encryption	
<u> </u>	<u> </u> 	 	<u> </u> 	

[src: author]

BLE Security

Security Features

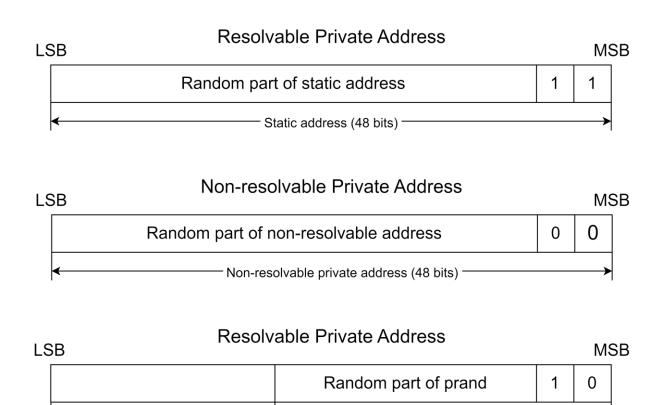
- Pairing
 - Key Exchange
- Bonding
 - Key Storage
- Device Authentication
- Encryption
- Message Integrity

Pairing

Legacy Pairing:

- 6-digit Temporal Key
 - 20-bit entropy
- Pairing Methods:
 - Just Works
 - Passkey Entry
 - Out of Band

Secure Connections Pairing:

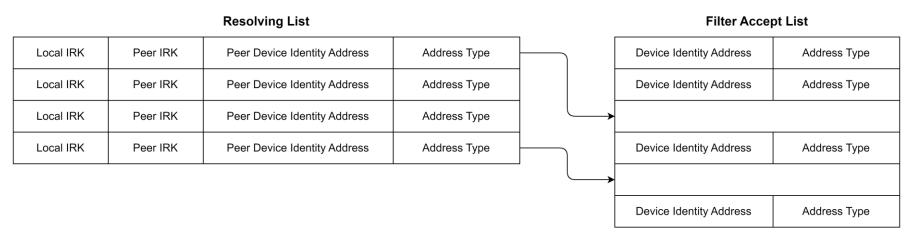

- Elliptic Curve Diffie-Hellman (ECDH)
 - P-256
- Pairing Methods:
 - Just Works
 - Numeric Comparison
 - Passkey Entry
 - · Out of Band

Encryption

- Session Key derived from
 - Short Term Key (STK)
 - Long Term Key (LTK)
- AES Cipher Block Chaining Message Authentication Code (CCM)
 - Stream Cipher
 - Message Integrity Check (MIC)

Address Types

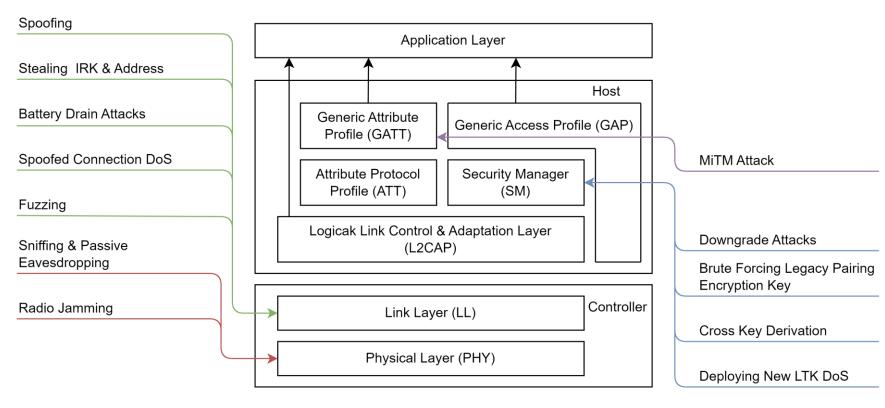
- Public Device Address
 - 48-bit Extended Unique Identifier (EUI-48) e.g., Ethernet MAC address
- Random Device Address
 - Static Device Address
 - Non-resolvable Private Address
 - Resolvable Private Address (Identity Resolving Key (IRK))



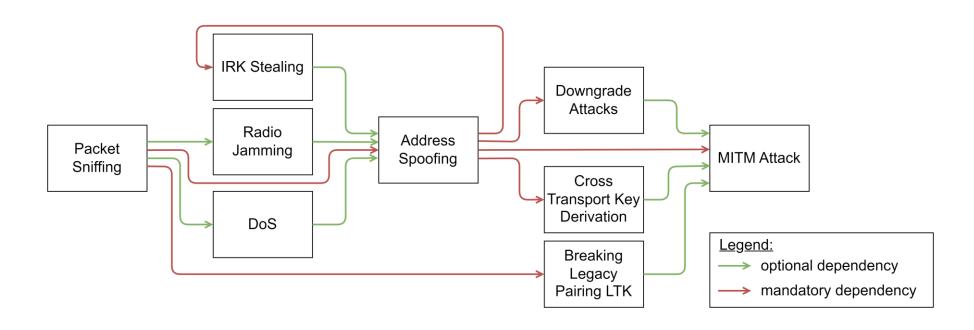
c.f. [Spec v5.3, p. 2667-2668, fig. 1.2-1.4]

prand (24 bits)

hash (24 bits)


Address Filtering

c.f. [Spec v5.3, p. 276, fig. 5.6]


Threat Model

Threat Model

c.f. [Spec v5.3, p. 1245, fig. 2.1]

Threat Model Dependencies

[src: author]

Layer	Attack Vector	S	Т	R	I	D	Е
PHY PHY	Sniffing Radio Jamming			S –	М	М	
LL LL LL	Spoofing [S] [S] Advertisement Spoofing [S] GATT Peripheral Spoofing [S] GATT Central Spoofing		S S S S	0 0 0 0	S		
LL	Stealing the BD_Address and IRK		S	S	S		
LL LL LL	Demail of Service Attacks [DoS] [DoS] Connection/Pairing request flooding [DoS] Battery drain Attacks [DoS] Spoofed connection		1			M M M	
LL	Fuzzing				I	I	
SMP SMP SMP SMP SMP	Downgrade Attacks [DA] [DA] Pairing Downgrade Attack [DA] Downgrade attack to Just Works [DA] Encryption Key entropy downgrade attack [DA] Downgrade Attack to plain text		M M M M	000000	I S		
SMP	Brute Forcing Legacy Pairing Encryption Key			S	М		S
SMP	Cross Key Derivation (CTKD)		М	S		S	S
SMP	Deploying new LTK DoS				М		
GATT	MitM Attack		М	S	Ι		I

[src: author]

Legend:

M: Main STRIDE category of threat

S: Substitute STRIDE category of threat

I: STRIDE category applies in some specific threat implementations

Biggest Threats

Sniffing

- · Hardware based (USB Devices) e.g.,
 - Ubertooth One^{1 [8]}
 - Adafruit LE Sniffer² [9]
 - nRF Sniffer³ [10]
- Software Defined Radio (SDR)
- Jamming:
 - Types:
 - Full or Selective
 - Flooding or Reactive
 - 3 Advertisement Channels of Interest

[src: author]

Spoofing

- Changing the Device Address
 - Manufacturer HCI Commands
 - Bluez bdaddr.c [11]
 - e.g Raspberry Pi

Types:

- Advertisement Spoofing
 - Connection Establishment & Broadcast Messages
- Peripheral Spoofing
 - GATT Profile Clone
- Central Spoofing
 - MitM & Whitelist Bypass

MitM Attack

- Based on:
 - Spoofing Attack
 - Downgrade Attack

Association Model	MitM Protection	Passive eavesdropping Protection				
Legacy Pairing						
Just Works	No	No				
Passkey Entry	Yes	No				
Out of Band	Yes/No	Yes/No				
Secure Connections						
Just Works	No	Yes				
Passkey Entry	Yes	Yes				
Numeric Comparison	Yes	Yes				
Out of Band	Yes/No	Yes				

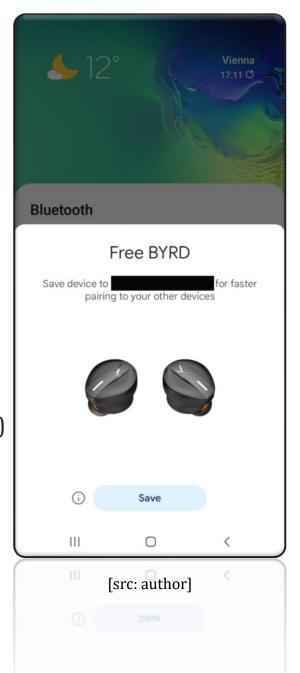
c.f. [Spec v5.3, pp. 1575-1585]

- Open Source MitM Tools
 - Btlejuice
 - Noble & Bleno (node.js)
 - Mirage
 - Security Audit Framework for IoT:
 - Zigbee
 - Wifi
 - BLE

How to Secure Connections

- Securing Devices:
 - Using The Security Features (Encryption)
 - or Application Layer Security
 - Chips with v4.2 or Higher
 - Secure Connections Only Mode (if possible)

Latest Threat

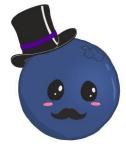

Apple Notification Spam

Attack:

- Malicious Device sends Spoofed Advertisements
 - Spoofed as Apple TV, Headphones ...
- User Devices show popups and Interrupts the usage

• Development

- First occurrence at Def Con by Jae Bochs as prank (June 2023)
- Techryptic ports exploit to custom Flipper Zero firmware (Sep 2023)
- Flipper Zero XFW-Xtreme Firmware in dev build (current)
 - Advanced version of attack:
 - · Works on Android
 - Crashes Apple Phones



Most Exotic Threat

Cross Transport Key Derivation (CTKD)

- Cross Transport Key Derivation
 - Derives BT Key from BLE key
 - Derives BLE Key from BT key
- Design Issues:
 - Dual Pairing
 - Asymmetric Role Systems
 - Replacing Keys
 - Manipulation of the Association Model

Thank You For Your Attention

ITS - NOW

June 6th and 7th 2024 Call for Participation:

https://its-now.science/?participation

